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A problem of gravity wave drag at an interface 

By F. W. G. WARREN AND R. F. MACKINNON 
Imperial College, London 

(Received 26 October 1967 and in revised form 19 March 1968) 

A thin disk, immersed in a fluid consisting of two superposed homogeneous in- 
viscid liquids, moves in its own vertical plane. A Green’s function is found for the 
potential and a formula for the gravity wave energy is found and evaluated for a 
specific case. 

1. Introduction 
When a body traverses a stratified fluid under gravity internal waves are set up. 

In  the particular case of two superposed homogeneous liquids of different 
densities these waves take the form of simple interfacial waves whose amplitude 
decreases away from the level of density discontinuity. There arises the problem 
of determining the energy which is propagated outwards along the interface. 
If the body is thin and its central plane always coincides with a fixed vertical 
plane, a familiar linearization enables estimates to be found in a comparatively 
simple manner, provided the angular velocity of the body is always zero. Hudi- 
mac (1961) has considered the problem of wave drag to horizontal motion on the 
surface of a stratified ocean, and Crapper (1967) has discussed the associated 
wave formation. Warren (1961) studied the case of strictly vertical motion of a 
thin body. Here the purpose is an investigation of the case of general motion in a 
vertical plane, excluding the effects of angular velocity. Thus the position of 
a given point of the body, hereafter called its centre, is given as a function of the 
time, while longitudinal and transverse axes fixed in the body always maintain 
the same angle of elevation with the horizontal. Moreover, the motion of the 
centre is confined to the fixed vertical plane which always contains the central 
plane of symmetry of the body. The thickness of the body varies from point to 
point, but in the strict mathematical sense its maximum thickness is infinitesimal 
compared with its lateral dimensions, and so the body may be thought of as a 
thin disk which is free to move in its own vertical plane. The basic method is given 
by Warren (1961, 1968), and a Green’s function is found. A drag formula and an 
expression for the gravity wave energy follow. An important case is one in which 
the disk moves with a fixed speed on a steady course in a straight line. The 
formula for the wave energy is evaluated in this instance for a specific shape of 
the disk and a small value of the density difference between the upper and lower 
fluids. The dependence of this energy upon the angle of incidence (7) and the 
angle of inclination (p) is shown graphically. There is also the problem of estimat- 
ing the accompanying lift and torque, but considerations of computer time and 
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cost were discouraging and no attempt to find these associated quantities was 
made. However, in many cases the value of the drag is an indication of the 
magnitude and importance of these. 

2. A Green’s function for the potential 
The submerged disk moves in its fixed vertical (y, 2)-plane so that its angular 

velocity in this plane is zero, but otherwise the motion is arbitrary. The position 
of its centre a t  time t is 

The x-axis is positive upwards and the (2 ,  y)-plane is defined by the undisturbed 
horizontal interface. The thickness of the disk varies from point to point so that 
its lateral surfaces are given by 

(2.1) (0, YO(t), x o ( t ) ) .  

2 = +a t (y ,  2, t )  (2.2) 

= t- ato(Y-Yo(% z - x o ( t ) ) ,  (2.3) 

where 2a is the maximum thickness. At points of the (y, 2)-plane exterior to the 
disk, <(y, x ,  t )  is defined to be zero. By assumption the disk is thin so that if A is 
the mean height of the disk and B is the mean breadth, then a < A, a < B,  and 
a small thickness parameter a < 1 is defined by 

01 = 2a/A. (2.4) 

g o ( t )  = i o ( t )  = 0 if t < to. (2.5) 

The disk is originally a t  rest a t  and before time t = to say, and so 

Here and hereafter a dot denotes a time derivative. In  the absence of viscosity 
the velocity of a fluid particle may be expressed in the form V# where #(x, y, x ,  t )  
is the velocity potential for both the upper and lower fluids. The boundary con- 
dition at  the surface of the disk then is given approximately by 

29/axlz,*0 = f a t  (2.6) 

with an error O(a2). This is the familiar thin body approximation to the boundary 
condition a t  the hull. Again for small a the wave amplitude a t  the interface is 
small and so tjhe kinematic condition here is that approximately 

a#/az is continuous a t  x = 0. (2.7) 

This is an infinitesimal wave approximation. Another condition on the potential 

q4 is continuous a t  x = 0. (2.8) 
is that 

The fluid is supposed to extend to  infinity in all directions, and if ii is the mean 
density of the upper and lower fluids then the current density p may be written 
as a function of the height z in the form 

p = p(x) = p ( l  -Asgnz), (2.9) 

where O < A < l .  
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Following the method outlined in Warren (1961) (see also Warren 1968), the 
strength G of the vortex sheet a t  the interface is introduced: 

Q(x7 Y7 t )  = %$,=+,-4,=-,). 

P(a2$/at2 + g aw4 

(2.10) 

Continuity of pressure at  the interface is expressed by continuity of 

at  z = 0, with an error O(a2) (see, for example, Lamb 1932). I n  terms of G this 
condition may be expressed as 

(2.11) 
2 2  

a2Q/at2 = &(a$/az),=, + JA ($,= to  + $,=-,)- 

The boundary condition at  infinity is 

(2.12) 

for all finite t ,  and the initiaI conditions are 

$ = r $ = G = G = O  at t = t , .  (2.13) 

Now if F ( x )  is a member of a suitable class of test functions then with the aid of 
(2.7), (2.8) and (2.12), equations (2.6) and (2.10) may be written 

J' rlx(a2+/ax2 - 2ata(x)) ~ ( x )  = ~ ( a )  
- 6  

and J' c l x { a 2 ~ / a z 2 -  2 G 8 ' ( z ) ) Y ( z )  = O(E), 
- E  

where here and hereafter a prime denotes differentiation with respect to z .  Here 
the potential is in its generalized form so that its differentiation a t  x = 0 and 
z = 0 is meaningful. Elsewhere the potential is harmonic, and so the field equa- 
tion for the generalized potential reads 

V2@ = ~cc<~ ' (x )  + 2GS'(z). (2.14) 

Under a Fourier transform 

J or, dx JL ci;, 1 (7: exp { - i (kx  + ty + mz)> 
- c  P 

this equation becomes? 

(k~+2~+~~)$(k,z,m7t)+2a~(z,m,t)+2imQ(k,1,t) = 0, (2.15) 

where the functions now take their appropriate transformation meaning: for 
example 

<(Z, m, t )  = Im ~ dy 1 tla <(g, z ,  t )  rxp I - i(Zg + mi))  = exp { - i K .  r,(t)] &(Z, m) 
% 

-or, 

(2.16) 

and <,(l, > i t )  = J:, d Y Im d~ to( Y ,  Z) - ~ ( Z Y  + ? f i ~ ) > ,  
--33 

t The analysis here and immediately following is very similar to that given in Warren 
(1968). 
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where K = ( k ,  I ,  m). 

Then from (2.15) an application of the inverse operator 

J - W  

gives 

(2.17) 

Here the horizontal radial wave-number X’  = (k2  + Z2)* has been introduced 
(X  3 0) .  A vorticity equation now follows from equations (2.11) and (2.17): 

G+AgXG = -(./.)I dm(iAgm~+A~)/ (X2+m2) .  

If here t is replaced by 7 and the equation is multiplied by sin [(AgX), ( t  - T)] and 
integrated from 7 = to to  7 = t ,  (t > t o ) ,  a familiar process of integration by parts 
(twice) yields 

m 

--m 

+ (AgX)a(im - A) Xecx I z i  sgn z d7 [(Z, m., 7) sin {(Ag%)b (t  - 7 ) )  

(2.18) 

where the initial conditions (2.13) have been used once more. The Green’s 
function for the problem now readily follows: 

$(r,t) = / I m d Y / - m  dZ<,(Y,Z)G(r,t ,  Y , z ) ,  
- m  

where 

x K .  fo(t) exp { - i K .  fo(t)) + (Ay/X)& (im - A X )  exp ( - X l z / )  

dt sin {(AgX)B (t  - 7 ) )  K .  fff(7) exp { - iK . Eff(7)) (Xz + m2)--1 1 
x expiilix + Z(y - Y )  + m(z - Z ) ] .  (2.19) 

Here the m-integration is readily performed but the result is an expression 
more cumbersome than the one given. 

3. The drag and wave energy 
Consider now the hydrodynamic presure. This is given approximately by 

p = -p$ ,  if OL < 1, and so the resultant hydrodynamic thrust on the disk a t  
time t is approximately 

--m - w  
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if terms O(a3) are neglected. I n  this expression 

is substituted for [0 ,  at lay,  a[ /az] ,  and 

is identified as a Fourier transform of ac$/dt. The expression for the thrust may 
then be written 

x /Im dz@(x  = 0, A ,  z ,  t ) /at  e-ipz( 1 - A sgn z ) .  (3 .2 )  

Here @/at may be found from (2.18) by a differentiation with respect to the 
time and the substitutions x = 0 and I = A. A further substitution for [ ( A ,  m, t )  
and [ ( - A ,  -p, t )  from equation (2 .16)  then enables the thrust to be expressed as 

(3 .3)  F(t) = Fdt)  + F&), 

where F,(t) = ( p a 2 / 2 n 4 ) j m  d k S a  d Z I m  d m j m  --m dp 
--m - m  --m 

x [0,1, PI 5 o ( l ,  m) go( - I ,  - P )  exp { i ( ~  - m)zo(t)} (x2 + m2)-' 

x { A ( p - - i A X )  ( X 2 + ~ 2 ) - 1 + A ( m - ~ ) - 1 + n i 8 ( ~ - ~ ) }  

x ((Z$&) + mi,(t))Z + i(l?jo(t) + mZo(t))} (3 .4)  

x c o s { ( A g Z ) ) ( t - T ) } .  (3 .5 )  

In  (3.4), the integral is a Cauchy principal value. Also the identity 

dz exp { - i p z  - X-I z I} (A - sgn z )  = 2 ( i p  + A X ) / ( X - z  + p 2 )  Km 
and others similar to this have been used. 

F,(t)  vanishes and 
Several checks may be made on these drag formulae. For instance, if A = 0, 

F,(t) = - (pa2 /2 j .3 ) /m d k S m  dZSm dm[O, 1, m] to( l ,m)  
- m  - m  - -m 

x [o(-Z, -nZ)(Z~o(t)+mEo(t))/(x2+m2). (3 .6 )  

This is a formula for the added mass effect in a uniform fluid. Setting go( t )  = 0, 
from (3 .5 )  there follows the drag formula of Warren (1968, equation (3 .18 ) ) .  
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Next, suppose that the motion is horizontal, i o ( t )  = 0, and that the speed is 
constant, go( t )  = 0 and$,(t) = V say. Consider then the limit of F,(t) as t becomes 
infinite and let T be the horizontal component of this limiting form of the drag. 
Then the r and k integrations are readily performed. Setting 1 = AgV-2 see 19, 
one finds aRer some manipulation that 

where 

R = Sm d!/S dza(,(y, z)/ay( 1 - A sgn z )  exp { - Ag?'-2 see cI( IzI sec 0 - iy)}. 

This is Michell's wave-resistance formula for the steady horizontal motion of a 
thin ship if A is set equal to one (Michell 1898). 

The application of the above formulae to the case of ascent through the 
interface is straightforward. The work done against the drag during the time 
interval (to, t l )  is 

m 

(3.8) --m --m 

-1::. . E,(t)dt 

and so the work done in generating the waves is 

- 1:: F,, . E,(t) dt. 

Applying the formula, (3.5), one finds that this is 

(3.9) 

In the case of steady motion, En(t) = (0, V ,  W )  where V arid W are constant, 
W =+ 0, and the time integrations can be made in terms of elementary functions. 
If then t, -+ a3 and to --> - GO, the resulting expression gives an estimate of the 
gravity wave energy generated during a transit of the interface. The identity 

lini 1"' rl! exp {i( VZ + W p )  t> d7 exp { - i (  VZ + Wm) 7) cos { (AgY)*( t  - T ) )  
f,-m - t ,  rt, 

= (n2 /Wz)  [S{,U+ W-l( VZ- (AgX)*)}6{m+ W-l( VZ- (AgX):))  
+ S{,u + W-l( VZ + (AgX):)} d(m + W-l( VZ + (AgX)h))l 

- 2ni( VZ + Wm) S(m - ,u)/ W { A g X -  (VZ + WW)') 

is required. Hence the total wave energy E,  is given by 
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where m* = {(A,%)*+ VZ}/W. (3.11) 

This result may be compared with an earlier result of Warren (1961, equation 
(19)‘): a change to polar co-ordinates ( k ,  I) + ( K ,  0)  and the substitution 

leads to this earlier result if one sets V = 0 and considers the limiting process: 
lim (E,/2B). This gives the waveenergyper unit length of an ascending body for 

the two-dimensional case. The axi-symmetric case is difficult to compare because 
it is not clear that the boundary conditions a t  the hull of the thin disk may be 
adapted consistently. However, the form of integral for the axi-symmetric case 
(Warren 1961, equation (19)) is readily seen to be the same as that for the thin 
disk if in this latter case one considers the limit in which 

to(Z, m) -+ [lim ( 2  sin BZ/BZ)]c,(m). 

However the multiplying factors outside the corresponding integrals do not 
agree. This modification is hardly surprising since the boundary conditions for 
the thin disk are somewhat different from those which are applied to the axi- 
symmetric case. 

B-m 

B-0 

4. Calculations for a specified case 

thickness is given in the form 
A numerical evaluation of the formula (3.10) was carried out for a disk whose 

too( Y ’ , Z ’ )  = A2B2/(A2+ Y’2)(B2+2‘2), (4.1) 

where too represents the form relative to the major and minor axes of symmetry 
Y‘ and 2’. If p is the inclination angle between the major axis and the vertical, 
then in terms of wave-numbers, 

t,(Z, m) = too(Z sinp + m cosp, m sinp- Z cosp). (4.2) 

The aspect ratio BIA selected was 0.1. The contours of the disk then approximate 
to ellipses of high eccentricity, except for a slight broadening in the vicinity of 
the minor axis. The effect of this increase in girth ‘amidships’ appears to be 
exaggerated in the curves of the wave drag and suggests that at certain angles of 
incidence y and inclination p small protuberances can make important contri- 
butions to the drag. The curves are shown in figures 2-5, where E, is the dimen- 
sionless form of the wave energy E,: 

(4.3) 2-U4A2B2 2 E, = (2n P 0 oa /gA)Eo(Ao;P,Y), 
where the Froude numbers A ,  = AgA/U2, B,  = AgB/U2 have been introduced, 
and U2 = V2+ W2. However, in some cases the values of Acl E, are given so as to 
simplify the plottings. Also because of restrictions of computer time, the case 
in which A is small and g is large has been considered only. Thus in (3.10) one sets 
Ag = g ’ (  + 0 )  and A = 0, so that A = g’A/U2. 
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FIGURE 1. Axes of reference and configuration of disk. 
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FIGURE 2. Curves of energy E versus angle of inclination of major axis of symmetry, /?, 

for various angles of incidence y. Froude number A ,  = AgA/U2 = 1. 
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FIGURE 3. Energy versus angle of inclination for various Froude numbers for an angle of 

incidence y = 45. Froude number A ,  = AgA/U2. 
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FIGURE 4. For legend see figure 5 .  
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The numerical computation entailed the use of certlain specially devised tech- 
niques, because the evaluation of the formula is not so straightforward as it 
might at  first appear. Tables of weights and abscissae for Gauss-Laguerre 
quadratures are given by Rabinowitz & Weiss (1959), and it may be seen that 

5 

4 .  

1 2 3 

2 1 "  

FIGURES 4 SKD 5. Energy versus Froucle number for various angles of incidence and 
inclination. 

this method is inadequate for certain values of y and p. For example, when 
y = 80, p = 0, small wavelengths contribute significantly to the energy. Thus 
a special technique was devised based on Romberg's method of quadrature, 
which, however, was time consuming and required elaborate programming. For 
further details on this see MacKinnon (1968). The computation was carried out 
on the London University Computer Atlas. 
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